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Figure 1. Generating high-fidelity 5122 images in a single step. All samples are generated with a single U-Net evaluation trained with
adversarial diffusion distillation (ADD).

Abstract

We introduce Adversarial Diffusion Distillation (ADD), a
novel training approach that efficiently samples large-scale
foundational image diffusion models in just 1–4 steps while
maintaining high image quality. We use score distillation
to leverage large-scale off-the-shelf image diffusion models
as a teacher signal in combination with an adversarial loss
to ensure high image fidelity even in the low-step regime
of one or two sampling steps. Our analyses show that our
model clearly outperforms existing few-step methods (GANs,
Latent Consistency Models) in a single step and reaches the
performance of state-of-the-art diffusion models (SDXL) in
only four steps. ADD is the first method to unlock single-step,
real-time image synthesis with foundation models.

1. Introduction

Diffusion models (DMs) [20, 63, 65] have taken a central
role in the field of generative modeling and have recently en-
abled remarkable advances in high-quality image- [3, 53, 54]
and video- [4, 12, 21] synthesis. One of the key strengths of
DMs is their scalability and iterative nature, which allows
them to handle complex tasks such as image synthesis from
free-form text prompts. However, the iterative inference
process in DMs requires a significant number of sampling
steps, which currently hinders their real-time application.
Generative Adversarial Networks (GANs) [14, 26, 27], on
the other hand, are characterized by their single-step for-
mulation and inherent speed. But despite attempts to scale
to large datasets[25, 58], GANs often fall short of DMs in
terms of sample quality. The aim of this work is to combine
the superior sample quality of DMs with the inherent speed
of GANs.
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Our approach is conceptually simple: We propose Ad-
versarial Diffusion Distillation (ADD), a general approach
that reduces the number of inference steps of a pre-trained
diffusion model to 1–4 sampling steps while maintaining
high sampling fidelity and potentially further improving the
overall performance of the model. To this end, we intro-
duce a combination of two training objectives: (i) an ad-
versarial loss and (ii) a distillation loss that corresponds
to score distillation sampling (SDS) [51]. The adversar-
ial loss forces the model to directly generate samples that
lie on the manifold of real images at each forward pass,
avoiding blurriness and other artifacts typically observed in
other distillation methods [43]. The distillation loss uses
another pretrained (and fixed) DM as a teacher to effectively
utilize the extensive knowledge of the pretrained DM and
preserve the strong compositionality observed in large DMs.
During inference, our approach does not use classifier-free
guidance [19], further reducing memory requirements. We
retain the model’s ability to improve results through iterative
refinement, which is an advantage over previous one-step
GAN-based approaches [59].

Our contributions can be summarized as follows:
• We introduce ADD, a method for turning pretrained diffu-

sion models into high-fidelity, real-time image generators
using only 1–4 sampling steps.

• Our method uses a novel combination of adversarial train-
ing and score distillation, for which we carefully ablate
several design choices.

• ADD significantly outperforms strong baselines such as
LCM, LCM-XL [38] and single-step GANs [59], and is
able to handle complex image compositions while main-
taining high image realism at only a single inference step.

• Using four sampling steps, ADD-XL outperforms its
teacher model SDXL-Base at a resolution of 5122 px.

2. Background
While diffusion models achieve remarkable performance in
synthesizing and editing high-resolution images [3, 53, 54]
and videos [4, 21], their iterative nature hinders real-time ap-
plication. Latent diffusion models [54] attempt to solve this
problem by representing images in a more computationally
feasible latent space [11], but they still rely on the iterative
application of large models with billions of parameters. In
addition to utilizing faster samplers for diffusion models
[8, 37, 64, 74], there is a growing body of research on model
distillation such as progressive distillation [56] and guidance
distillation [43]. These approaches reduce the number of
iterative sampling steps to 4-8, but may significantly lower
the original performance. Furthermore, they require an it-
erative training process. Consistency models [66] address
the latter issue by enforcing a consistency regularization on
the ODE trajectory and demonstrate strong performance for
pixel-based models in the few-shot setting. LCMs [38] focus

Figure 2. Adversarial Diffusion Distillation. The ADD-student
is trained as a denoiser that receives diffused input images xs
and outputs samples x̂θ(xs, s) and optimizes two objectives: a)
adversarial loss: the model aims to fool a discriminator which is
trained to distinguish the generated samples x̂θ from real images
x0. b) distillation loss: the model is trained to match the denoised
targets x̂ψ of a frozen DM teacher.

on distilling latent diffusion models and achieve impressive
performance at 4 sampling steps. Recently, LCM-LoRA [40]
introduced a low-rank adaptation [22] training for efficiently
learning LCM modules, which can be plugged into differ-
ent checkpoints for SD and SDXL [50, 54]. InstaFlow [36]
propose to use Rectified Flows [35] to facilitate a better
distillation process.

All of these methods share common flaws: samples syn-
thesized in four steps often look blurry and exhibit noticeable
artifacts. At fewer sampling steps, this problem is further am-
plified. GANs [14] can also be trained as standalone single-
step models for text-to-image synthesis [25, 59]. Their sam-
pling speed is impressive, yet the performance lags behind
diffusion-based models. In part, this can be attributed to the
finely balanced GAN-specific architectures necessary for sta-
ble training of the adversarial objective. Scaling these mod-
els and integrating advances in neural network architectures
without disturbing the balance is notoriously challenging.
Additionally, current state-of-the-art text-to-image GANs
do not have a method like classifier-free guidance available
which is crucial for DMs at scale.

Score Distillation Sampling [51] also known as Score
Jacobian Chaining [68] is a recently proposed method that
has been developed to distill the knowledge of foundational
T2I Models into 3D synthesis models. While the majority of
SDS-based works [45, 51, 68, 69] use SDS in the context of
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A cinematic shot of a professor sloth wearing a tuxedo at a
BBQ party.

A high-quality photo of a confused bear in calculus class. The
bear is wearing a party hat and steampunk armor.
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Figure 3. Qualitative comparison to state-of-the-art fast samplers. Single step samples from our ADD-XL (top) and LCM-XL [40], our
custom StyleGAN-T [59] baseline, InstaFlow [36] and MUSE. For MUSE, we use the OpenMUSE implementation and default inference
settings with 16 sampling steps. For LCM-XL, we sample with 1, 2 and 4 steps. Our model outperforms all other few-step samplers in a
single step.

per-scene optimization for 3D objects, the approach has also
been applied to text-to-3D-video-synthesis [62] and in the
context of image editing [16].

Recently, the authors of [13] have shown a strong relation-
ship between score-based models and GANs and propose
Score GANs, which are trained using score-based diffusion
flows from a DM instead of a discriminator. Similarly, Diff-
Instruct [42], a method which generalizes SDS, enables to
distill a pretrained diffusion model into a generator without
discriminator.

Conversely, there are also approaches which aim to im-
prove the diffusion process using adversarial training. For

faster sampling, Denoising Diffusion GANs [70] are intro-
duced as a method to enable sampling with few steps. To
improve quality, a discriminator loss is added to the score
matching objective in Adversarial Score Matching [24] and
the consistency objective of CTM [29].

Our method combines adversarial training and score dis-
tillation in a hybrid objective to address the issues in current
top performing few-step generative models.

3. Method
Our goal is to generate high-fidelity samples in as few sam-
pling steps as possible, while matching the quality of state-
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“A brain riding a rocketship heading
towards the moon.”

“A bald eagle made of chocolate powder,
mango, and whipped cream” “A blue colored dog.”
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Figure 4. Qualitative effect of sampling steps. We show qualitative examples when sampling ADD-XL with 1, 2, and 4 steps. Single-step
samples are often already of high quality, but increasing the number of steps can further improve the consistency (e.g. second prompt, first
column) and attention to detail (e.g. second prompt, second column). The seeds are constant within columns and we see that the general
layout is preserved across sampling steps, allowing for fast exploration of outputs while retaining the possibility to refine.

of-the-art models [7, 50, 53, 55]. The adversarial objec-
tive [14, 60] naturally lends itself to fast generation as it
trains a model that outputs samples on the image manifold in
a single forward step. However, attempts at scaling GANs to
large datasets [58, 59] observed that is critical to not solely
rely on the discriminator, but also employ a pretrained clas-
sifier or CLIP network for improving text alignment. As
remarked in [59], overly utilizing discriminative networks
introduces artifacts and image quality suffers. Instead, we
utilize the gradient of a pretrained diffusion model via a score
distillation objective to improve text alignment and sample
quality. Furthermore, instead of training from scratch, we
initialize our model with pretrained diffusion model weights;
pretraining the generator network is known to significantly
improve training with an adversarial loss [15]. Lastly, in-
stead of utilizing a decoder-only architecture used for GAN
training [26, 27], we adapt a standard diffusion model frame-
work. This setup naturally enables iterative refinement.

3.1. Training Procedure

Our training procedure is outlined in Fig. 2 and involves three
networks: The ADD-student is initialized from a pretrained
UNet-DM with weights θ, a discriminator with trainable
weights ϕ, and a DM teacher with frozen weights ψ. Dur-
ing training, the ADD-student generates samples x̂θ(xs, s)
from noisy data xs. The noised data points are produced
from a dataset of real images x0 via a forward diffusion
process xs = αsx0 + σsϵ. In our experiments, we use the
same coefficients αs and σs as the student DM and sam-
ple s uniformly from a set Tstudent = {τ1, ..., τn} of N
chosen student timesteps. In practice, we choose N = 4.
Importantly, we set τn = 1000 and enforce zero-terminal
SNR [33] during training, as the model needs to start from

pure noise during inference.
For the adversarial objective, the generated samples x̂θ

and real images x0 are passed to the discriminator which
aims to distinguish between them. The design of the dis-
criminator and the adversarial loss are described in detail in
Sec. 3.2. To distill knowledge from the DM teacher, we dif-
fuse student samples x̂θ with the teacher’s forward process to
x̂θ,t, and use the teacher’s denoising prediction x̂ψ(x̂θ,t, t)
as a reconstruction target for the distillation loss Ldistill,
see Section 3.3. Thus, the overall objective is

L = LG
adv(x̂θ(xs, s), ϕ) + λLdistill(x̂θ(xs, s), ψ) (1)

While we formulate our method in pixel space, it is
straightforward to adapt it to LDMs operating in latent space.
When using LDMs with a shared latent space for teacher
and student, the distillation loss can be computed in pixel or
latent space. We compute the distillation loss in pixel space
as this yields more stable gradients when distilling latent
diffusion model [72].

3.2. Adversarial Loss

For the discriminator, we follow the proposed design and
training procedure in [59] which we briefly summarize; for
details, we refer the reader to the original work. We use a
frozen pretrained feature network F and a set of trainable
lightweight discriminator heads Dϕ,k. For the feature net-
work F , Sauer et al. [59] find vision transformers (ViTs) [9]
to work well, and we ablate different choice for the ViTs
objective and model size in Section 4. The trainable discrim-
inator heads are applied on features Fk at different layers of
the feature network.

To improve performance, the discriminator can be condi-
tioned on additional information via projection [46]. Com-
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Figure 5. User preference study (single step). We compare the performance of ADD-XL (1-step) against established baselines. ADD-XL
model outperforms all models, except SDXL in human preference for both image quality and prompt alignment. Using more sampling steps
further improves our model (bottom row).

monly, a text embedding ctext is used in the text-to-image
setting. But, in contrast to standard GAN training, our train-
ing configuration also allows to condition on a given image.
For τ < 1000, the ADD-student receives some signal from
the input image x0. Therefore, for a given generated sample
x̂θ(xs, s), we can condition the discriminator on information
from x0. This encourages the ADD-student to utilize the
input effectively. In practice, we use an additional feature
network to extract an image embedding cimg.

Following [57, 59], we use the hinge loss [32] as the
adversarial objective function. Thus the ADD-student’s ad-
versarial objective Ladv(x̂θ(xs, s), ϕ) amounts to

LG
adv(x̂θ(xs, s), ϕ)

= −Es,ϵ,x0

[∑
k

Dϕ,k(Fk(x̂θ(xs, s)))
]
, (2)

whereas the discriminator is trained to minimize

LD
adv(x̂θ(xs, s), ϕ)

= Ex0

[∑
k

max(0, 1−Dϕ,k(Fk(x0))) + γR1(ϕ)
]

+Ex̂θ

[∑
k

max(0, 1 +Dϕ,k(Fk(x̂θ)))
]
,

(3)

where R1 denotes the R1 gradient penalty [44]. Rather
than computing the gradient penalty with respect to the pixel
values, we compute it on the input of each discriminator head
Dϕ,k. We find that the R1 penalty is particularly beneficial
when training at output resolutions larger than 1282 px.

3.3. Score Distillation Loss

The distillation loss in Eq. (1) is formulated as

Ldistill(x̂θ(xs, s), ψ)

= Et,ϵ′
[
c(t)d(x̂θ, x̂ψ(sg(x̂θ,t); t))

]
,

(4)

where sg denotes the stop-gradient operation. Intuitively,
the loss uses a distance metric d to measure the mis-
match between generated samples xθ by the ADD-student
and the DM-teacher’s outputs x̂ψ(x̂θ,t, t) = (x̂θ,t −
σtϵ̂ψ(x̂θ,t, t))/αt averaged over timesteps t and noise ϵ′.
Notably, the teacher is not directly applied on generations
x̂θ of the ADD-student but instead on diffused outputs
x̂θ,t = αtx̂θ + σtϵ

′, as non-diffused inputs would be out-of-
distribution for the teacher model [68].

In the following, we define the distance function
d(x, y) := ||x − y||22. Regarding the weighting function
c(t), we consider two options: exponential weighting, where
c(t) = αt (higher noise levels contribute less), and score dis-
tillation sampling (SDS) weighting [51]. In the supplemen-
tary material, we demonstrate that with d(x, y) = ||x− y||22
and a specific choice for c(t), our distillation loss becomes
equivalent to the SDS objective LSDS, as proposed in [51].
The advantage of our formulation is its ability to enable
direct visualization of the reconstruction targets and that
it naturally facilitates the execution of several consecutive
denoising steps. Lastly, we also evaluate noise-free score
distillation (NFSD) objective, a recently proposed variant of
SDS [28].

4. Experiments

For our experiments, we train two models of different ca-
pacities, ADD-M (860M parameters) and ADD-XL (3.1B
parameters). For ablating ADD-M, we use a Stable Dif-
fusion (SD) 2.1 backbone [54], and for fair comparisons
with other baselines, we use SD1.5. ADD-XL utilizes a
SDXL [50] backbone. All experiments are conducted at
a standardized resolution of 512x512 pixels; outputs from
models generating higher resolutions are down-sampled to
this size.

We employ a distillation weighting factor of λ = 2.5
across all experiments. Additionally, the R1 penalty strength

5



Arch Objective FID ↓ CS ↑
ViT-S DINOv1 21.5 0.312
ViT-S DINOv2 20.6 0.319
ViT-L DINOv2 24.0 0.302
ViT-L CLIP 23.3 0.308

(a) Discriminator feature networks. Small,
modern DINO networks perform best.

ctext cimg FID ↓ CS ↑
✗ ✗ 21.2 0.302
✓ ✗ 21.2 0.307
✗ ✓ 21.1 0.316
✓ ✓ 20.6 0.319

(b) Discriminator conditioning. Combining
image and text conditioning is most effective.

Initialization FID ↓ CS ↑
Random 293.6 0.065
Pretrained 20.6 0.319

(c) Student pretraining. A randomly initial-
ized student network collapses.

Loss FID ↓ CS ↑
Ladv 20.8 0.315
Ldistill 315.6 0.076
Ladv + λLdistill,exp 20.6 0.319
Ladv + λLdistill,sds 22.3 0.325
Ladv+λLdistill,nfsd 21.8 0.327

(d) Loss terms. Both losses are needed and
exponential weighting of Ldistill is beneficial.

Student Teacher FID ↓ CS ↑
SD2.1 SD2.1 20.6 0.319
SD2.1 SDXL 21.3 0.321
SDXL SD2.1 29.3 0.314
SDXL SDXL 28.41 0.325

(e) Teacher type. The student adopts the
teacher’s traits (SDXL has higher FID & CS).

Steps FID ↓ CS ↑
1 20.6 0.319
2 20.8 0.321
4 20.3 0.317

(f) Teacher steps. A single teacher step is suffi-
cient.

Table 1. ADD ablation study. We report COCO zero-shot FID5k (FID) and CLIP score (CS). The results are calculated for a single student
step. The default training settings are: DINOv2 ViT-S as the feature network, text and image conditioning for the discriminator, pretrained
student weights, a small teacher and student model, and a single teacher step. The training length is 4000 iterations with a batch size of 128.
Default settings are marked in gray .

γ is set to 10−5. For discriminator conditioning, we use
a pretrained CLIP-ViT-g-14 text encoder [52] to compute
text embeddings ctext and the CLS embedding of a DINOv2
ViT-L encoder [47] for image embeddings cimg. For the
baselines, we use the best publicly available models: La-
tent diffusion models [50, 54] (SD1.51, SDXL2) cascaded
pixel diffusion models [55] (IF-XL3), distilled diffusion mod-
els [39, 41] (LCM-1.5, LCM-1.5-XL4), and OpenMUSE
5 [48], a reimplementation of MUSE [6], a transformer
model specifically developed for fast inference. Note that
we compare to the SDXL-Base-1.0 model without its addi-
tional refiner model; this is to ensure a fair comparison. As
there are no public state-of-the-art GAN models, we retrain
StyleGAN-T [59] with our improved discriminator. This
baseline (StyleGAN-T++) significantly outperforms the pre-
vious best GANs in FID and CS, see supplementary. We
quantify sample quality via FID [18] and text alignment via
CLIP score [17]. For CLIP score, we use ViT-g-14 model
trained on LAION-2B [61]. Both metrics are evaluated on
5k samples from COCO2017 [34].

4.1. Ablation Study

Our training setup opens up a number of design spaces re-
garding the adversarial loss, distillation loss, initialization,
and loss interplay. We conduct an ablation study on several
choices in Table 1; key insights are highlighted below each
table. We will discuss each experiment in the following.

Discriminator feature networks. (Table 1a). Recent
insights by Stein et al. [67] suggest that ViTs trained with the
CLIP [52] or DINO [5, 47] objectives are particularly well-

1https://github.com/CompVis/stable-diffusion
2https://github.com/Stability-AI/generative-models
3https://github.com/deep-floyd/IF
4https://huggingface.co/latent-consistency/lcm-lora-sdxl
5https://huggingface.co/openMUSE

suited for evaluating the performance of generative models.
Similarly, these models also seem effective as discriminator
feature networks, with DINOv2 emerging as the best choice.

Discriminator conditioning. (Table 1b). Similar to prior
studies, we observe that text conditioning of the discrimi-
nator enhances results. Notably, image conditioning outper-
forms text conditioning, and the combination of both ctext
and cimg yields the best results.

Student pretraining. (Table 1c). Our experiments demon-
strate the importance of pretraining the ADD-student. Being
able to use pretrained generators is a significant advantage
over pure GAN approaches. A problem of GANs is the lack
of scalability; both Sauer et al. [59] and Kang et al. [25]
observe a saturation of performance after a certain network
capacity is reached. This observation contrasts the generally
smooth scaling laws of DMs [49]. However, ADD can ef-
fectively leverage larger pretrained DMs (see Table 1c) and
benefit from stable DM pretraining.

Loss terms. (Table 1d). We find that both losses are essen-
tial. The distillation loss on its own is not effective, but when
combined with the adversarial loss, there is a noticeable im-
provement in results. Different weighting schedules lead
to different behaviours, the exponential schedule tends to
yield more diverse samples, as indicated by lower FID, SDS
and NFSD schedules improve quality and text alignment.
While we use the exponential schedule as the default setting
in all other ablations, we opt for the NFSD weighting for
training our final model. Choosing an optimal weighting
function presents an opportunity for improvement. Alterna-
tively, scheduling the distillation weights over training, as
explored in the 3D generative modeling literature [23] could
be considered.
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Figure 6. User preference study (multiple steps). We compare the performance of ADD-XL (4-step) against established baselines. Our
ADD-XL model outperforms all models, including its teacher SDXL 1.0 (base, no refiner) [50], in human preference for both image quality
and prompt alignment.

Method #Steps Time (s) FID ↓ CLIP ↑

DPM Solver [37] 25 0.88 20.1 0.318
8 0.34 31.7 0.320

Progressive Distillation [43]
1 0.09 37.2 0.275
2 0.13 26.0 0.297
4 0.21 26.4 0.300

CFG-Aware Distillation [31] 8 0.34 24.2 0.300

InstaFlow-0.9B [36] 1 0.09 23.4 0.304
InstaFlow-1.7B [36] 1 0.12 22.4 0.309

UFOGen [71] 1 0.09 22.5 0.311

ADD-M 1 0.09 19.7 0.326

Table 2. Distillation Comparison We compare ADD to other
distillation methods via COCO zero-shot FID5k (FID) and CLIP
score (CS). All models are based on SD1.5.

Teacher type. (Table 1e). Interestingly, a bigger student
and teacher does not necessarily result in better FID and
CS. Rather, the student adopts the teachers characteristics.
SDXL obtains generally higher FID, possibly because of its
less diverse output, yet it exhibits higher image quality and
text alignment [50].

Teacher steps. (Table 1f). While our distillation loss
formulation allows taking several consecutive steps with the
teacher by construction, we find that several steps do not
conclusively result in better performance.

4.2. Quantitative Comparison to State-of-the-Art

For our main comparison with other approaches, we refrain
from using automated metrics, as user preference studies
are more reliable [50]. In the study, we aim to assess both
prompt adherence and the overall image. As a performance
measure, we compute win percentages for pairwise compar-
isons and ELO scores when comparing several approaches.
For the reported ELO scores we calculate the mean scores

900 950 1,000 1,050 1,100 1,150 1,200
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OpenMUSE
(16 steps) LCM-XL
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ADD-XL
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Figure 7. Performance vs. speed. We visualize the results reported
in Fig. 6 in combination with the inference speeds of the respective
models. The speeds are calculated for generating a single sample
at resolution 512x512 on an A100 in mixed precision.

between both prompt following and image quality. Details
on the ELO score computation and the study parameters are
listed in the supplementary material.

Fig. 5 and Fig. 6 present the study results. The most im-
portant results are: First, ADD-XL outperforms LCM-XL (4
steps) with a single step. Second, ADD-XL can beat SDXL
(50 steps) with four steps in the majority of comparisons.
This makes ADD-XL the state-of-the-art in both the single
and the multiple steps setting. Fig. 7 visualizes ELO scores
relative to inference speed. Lastly, Table 2 compares dif-
ferent few-step sampling and distillation methods using the
same base model. ADD outperforms all other approaches
including the standard DPM solver with eight steps.

4.3. Qualitative Results

To complement our quantitative studies above, we present
qualitative results in this section. To paint a more complete
picture, we provide additional samples and qualitative com-
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A cinematic shot of a little pig priest wearing sunglasses.

A photograph of the inside of a subway train. There are frogs
sitting on the seats. One of them is reading a newspaper. The

window shows the river in the background.

A
D

D
-X

L
(4

st
ep

s)
SD

X
L

-B
as

e
(5

0
st

ep
s)

A photo of an astronaut riding a horse in the forest. There is a
river in front of them with water lilies. A photo of a cute mouse wearing a crown.
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Figure 8. Qualitative comparison to the teacher model. ADD-XL can outperform its teacher model SDXL in the multi-step setting. The
adversarial loss boosts realism, particularly enhancing textures (fur, fabric, skin) while reducing oversmoothing, commonly observed in
diffusion model samples. ADD-XL’s overall sample diversity tends to be lower.

parisons in the supplementary material. Fig. 3 compares
ADD-XL (1 step) against the best current baselines in the
few-steps regime. Fig. 4 illustrates the iterative sampling
process of ADD-XL. These results showcase our model’s
ability to improve upon an initial sample. Such iterative
improvement represents another significant benefit over pure
GAN approaches like StyleGAN-T++. Lastly, Fig. 8 com-
pares ADD-XL directly with its teacher model SDXL-Base.
As indicated by the user studies in Section 4.2, ADD-XL
outperforms its teacher in both quality and prompt alignment.
The enhanced realism comes at the cost of slightly decreased
sample diversity.

5. Discussion

This work introduces Adversarial Diffusion Distillation, a
general method for distilling a pretrained diffusion model
into a fast, few-step image generation model. We combine
an adversarial and a score distillation objective to distill the
public Stable Diffusion [54] and SDXL [50] models, lever-
aging both real data through the discriminator and structural
understanding through the diffusion teacher. Our approach
performs particularly well in the ultra-fast sampling regime
of one or two steps, and our analyses demonstrate that it out-
performs all concurrent methods in this regime. Furthermore,

we retain the ability to refine samples using multiple steps.
In fact, using four sampling steps, our model outperforms
widely used multi-step generators such as SDXL, IF, and
OpenMUSE.

Our model enables the generation of high quality images
in a single-step, opening up new possibilities for real-time
generation with foundation models.
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Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel
Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2:
Learning robust visual features without supervision. arXiv
preprint arXiv:2304.07193, 2023. 6

[48] Suraj Patil, William Berman, and Patrick von Platen. Amused:
An open muse model. https://github.com/huggingface/
diffusers, 2023. 6, 15

[49] William Peebles and Saining Xie. Scalable diffusion models
with transformers. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 4195–4205,
2023. 6

[50] Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann,
Tim Dockhorn, Jonas Müller, Joe Penna, and Robin Rombach.
Sdxl: Improving latent diffusion models for high-resolution
image synthesis. arXiv preprint arXiv:2307.01952, 2023. 2,
4, 5, 6, 7, 8, 12, 13

[51] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall.
Dreamfusion: Text-to-3d using 2d diffusion. arXiv preprint
arXiv:2209.14988, 2022. 2, 5, 12

[52] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748–8763. PMLR, 2021. 6, 12

[53] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,
and Mark Chen. Hierarchical text-conditional image gener-
ation with clip latents. ArXiv, abs/2204.06125, 2022. 1, 2,
4

[54] Robin Rombach, A. Blattmann, Dominik Lorenz, Patrick
Esser, and Björn Ommer. High-resolution image synthesis
with latent diffusion models. 2022 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
10674–10685, 2021. 1, 2, 5, 6, 8

[55] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li,
Jay Whang, Emily L Denton, Kamyar Ghasemipour, Raphael
Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Pho-
torealistic text-to-image diffusion models with deep language

10

https://github.com/huggingface/diffusers
https://github.com/huggingface/diffusers


understanding. Advances in Neural Information Processing
Systems, 35:36479–36494, 2022. 4, 6

[56] Tim Salimans and Jonathan Ho. Progressive distillation for
fast sampling of diffusion models. CoRR, abs/2202.00512,
2022. 2

[57] Axel Sauer, Kashyap Chitta, Jens Müller, and Andreas Geiger.
Projected gans converge faster. Advances in Neural Informa-
tion Processing Systems, 34:17480–17492, 2021. 5

[58] Axel Sauer, Katja Schwarz, and Andreas Geiger. Stylegan-xl:
Scaling stylegan to large diverse datasets. ACM SIGGRAPH
2022 Conference Proceedings, 2022. 1, 4

[59] Axel Sauer, Tero Karras, Samuli Laine, Andreas Geiger, and
Timo Aila. Stylegan-t: Unlocking the power of gans for fast
large-scale text-to-image synthesis. Proc. ICML, 2023. 2, 3,
4, 5, 6, 14

[60] Juergen Schmidhuber. Generative adversarial networks are
special cases of artificial curiosity (1990) and also closely
related to predictability minimization (1991), 2020. 4

[61] Christoph Schuhmann, Romain Beaumont, Richard Vencu,
Cade Gordon, Ross Wightman, Mehdi Cherti, Theo Coombes,
Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al.
LAION-5B: An open large-scale dataset for training next
generation image-text models. In NeurIPS, 2022. 6

[62] Uriel Singer, Shelly Sheynin, Adam Polyak, Oron Ashual,
Iurii Makarov, Filippos Kokkinos, Naman Goyal, Andrea
Vedaldi, Devi Parikh, Justin Johnson, et al. Text-to-4d dy-
namic scene generation. arXiv preprint arXiv:2301.11280,
2023. 3

[63] Jascha Narain Sohl-Dickstein, Eric A. Weiss, Niru Ma-
heswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. ArXiv,
abs/1503.03585, 2015. 1

[64] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising
diffusion implicit models. In International Conference on
Learning Representations, 2021. 2

[65] Yang Song, Jascha Narain Sohl-Dickstein, Diederik P.
Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole.
Score-based generative modeling through stochastic differen-
tial equations. ArXiv, abs/2011.13456, 2020. 1

[66] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever.
Consistency models. In International Conference on Machine
Learning, 2023. 2

[67] George Stein, Jesse C Cresswell, Rasa Hosseinzadeh, Yi Sui,
Brendan Leigh Ross, Valentin Villecroze, Zhaoyan Liu, An-
thony L Caterini, J Eric T Taylor, and Gabriel Loaiza-Ganem.
Exposing flaws of generative model evaluation metrics and
their unfair treatment of diffusion models. arXiv preprint
arXiv:2306.04675, 2023. 6, 14

[68] Haochen Wang, Xiaodan Du, Jiahao Li, Raymond A Yeh,
and Greg Shakhnarovich. Score jacobian chaining: Lifting
pretrained 2d diffusion models for 3d generation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 12619–12629, 2023. 2, 5

[69] Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan
Li, Hang Su, and Jun Zhu. Prolificdreamer: High-fidelity and
diverse text-to-3d generation with variational score distilla-
tion. ArXiv, abs/2305.16213, 2023. 2

[70] Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling
the generative learning trilemma with denoising diffusion
gans. arXiv preprint arXiv:2112.07804, 2021. 3

[71] Yanwu Xu, Yang Zhao, Zhisheng Xiao, and Tingbo Hou. Ufo-
gen: You forward once large scale text-to-image generation
via diffusion gans. arXiv preprint arXiv:2311.09257, 2023. 7

[72] Chun-Han Yao, Amit Raj, Wei-Chih Hung, Yuanzhen Li,
Michael Rubinstein, Ming-Hsuan Yang, and Varun Jampani.
Artic3d: Learning robust articulated 3d shapes from noisy
web image collections. arXiv preprint arXiv:2306.04619,
2023. 4

[73] Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan
Baid, Zirui Wang, Vijay Vasudevan, Alexander Ku, Yinfei
Yang, Burcu Karagol Ayan, Ben Hutchinson, Wei Han, Zarana
Parekh, Xin Li, Han Zhang, Jason Baldridge, and Yonghui
Wu. Scaling autoregressive models for content-rich text-to-
image generation, 2022. 12

[74] Qinsheng Zhang and Yongxin Chen. Fast sampling of dif-
fusion models with exponential integrator. arXiv preprint
arXiv:2204.13902, 2022. 2

11



Appendix

A. SDS As a Special Case of the Distillation Loss

If we set the weighting function to c(t) = αt

2σt
w(t) where w(t) is the scaling factor from the weighted diffusion loss as in [51]

and choose d(x, y) = ||x− y||22, the distillation loss in Eq. (4) is equivalent to the score distillation objective:

d

dθ
LMSE

distill

= Et,ϵ′
[
c(t)

d

dθ
||x̂θ − x̂ψ(sg(x̂θ,t); t)||22

]
= Et,ϵ′

[
2c(t)[x̂θ − x̂ψ(x̂θ,t; t)]

dx̂θ
dθ

]
= Et,ϵ′

[αt
σt
w(t)[

1

αt
(x̂θ,t − x̂θ,t) + x̂θ − x̂ψ(x̂θ,t; t)]

dx̂θ
dθ

]
= Et,ϵ′

[ 1

σt
w(t)[(αtx̂θ − x̂θ,t)− (αtx̂ψ(x̂θ,t; t)− x̂θ,t)]

dx̂θ
dθ

]
= Et,ϵ′

[w(t)
σt

[−σtϵ′ + σtϵ̂θ(x̂θ,t; t)]
dx̂θ
dθ

]
=

d

dθ
LSDS

(5)

B. Details on Human Preference Assessment

For the evaluation results presented in Figures 5 to 7, we employ human evaluation and do not rely on commonly used
metrics for quality assessment of generative models such as FID [18] and CLIP-score [52], since these have been shown to
capture more fine grained aspects like aesthetics and scene composition only insufficiently [30, 50]. However these categories
in particular have become more and more important when comparing current state-of-the-art text-to-image models. We
evaluate all models based on 100 selected prompts from the PartiPrompts benchmark [73] with the most relevant categories
(excluding prompts from the category basic). More details on how the study was conducted Appendix B.1 and the rankings
computed Appendix B.2 are listed below.

Figure 9. User preference study (single step). We compare the performance of ADD-M (1-step) against established baselines.
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Figure 10. User preference study (multiple steps). We compare the performance of ADD-XL (4-step) against established baselines.

B.1. Experimental Setup

Given all models for one particular study (e.g. ADD-XL, OpenMUSE6, IF-XL7, SDXL [50] and LCM-XL8 [38, 40] in
Figure 7) we compare each prompt for each pair of models (1v1). For every comparison, we collect an average of four votes
per task from different annotators, for both visual quality and prompt following. Human evaluators, recruited from the platform
Prolific9 with English as their first language, are shown two images from different models based on the same text prompt. To
prevent biases, evaluators are restricted from participating in more than one of our studies. For the prompt following task,
we display the text prompt above the two images and ask, “Which image looks more representative of the text shown above
and faithfully follows it?” For the visual quality assessment, we do not show the prompt and instead ask, “Which image is of
higher quality and aesthetically more pleasing?”. Performing a complete assessment between all pair-wise comparisons gives
us robust and reliable signals on model performance trends and the effect of varying thresholds. The order of prompts and the
order between models are fully randomized. Frequent attention checks are in place to ensure data quality.

B.2. ELO Score Calculation

To calculate rankings when comparing more than two models based on 1v1 comparisons we use ELO Scores (higher-is-
better) [10] which were originally proposed as a scoring method for chess players but have more recently also been applied to
compare instruction-tuned generative LLMs [1, 2]. For a set of competing players with initial ratings Rinit participating in a
series of zero-sum games the ELO rating system updates the ratings of the two players involved in a particular game based on
the expected and and actual outcome of that game. Before the game with two players with ratings R1 and R2, the expected
outcome for the two players are calculated as

E1 =
1

1 + 10
R2−R1

400

, (6)

E2 =
1

1 + 10
R1−R2

400

. (7)

After observing the result of the game, the ratings Ri are updated via the rule

R
′

i = Ri +K · (Si − Ei) , i ∈ {1, 2} (8)

where Si indicates the outcome of the match for player i. In our case we have Si = 1 if player i wins and Si = 0 if player
i looses. The constant K can be see as weight putting emphasis on more recent games. We choose K = 1 and bootstrap
the final ELO ranking for a given series of comparisons based on 1000 individual ELO ranking calculations with randomly
shuffled order. Before comparing the models we choose the start rating for every model as Rinit = 1000.

6https://huggingface.co/openMUSE
7https://github.com/deep-floyd/IF
8https://huggingface.co/latent-consistency/lcm-lora-sdxl
9https://app.prolific.com
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C. GAN Baselines Comparison
For training our state-of-the-art GAN baseline StyleGAN-T++, we follow the training procedure outlined in [59]. The main
differences are extended training (∼2M iterations with a batch size of 2048, which is comparable to GigaGAN’s schedule [25]),
the improved discriminator architecture proposed in Section 3.2, and R1 penalty applied at each discriminator head.

Fig. 11 shows that StyleGAN-T++ outperforms the previous best GANs by achieving a comparable zero-shot FID to
GigaGAN at a significantly higher CLIP score. Here, we do not compare to DMs, as comparisons between model classes via
automatic metrics tend to be less informative [67]. As an example, GigaGAN achieves FID and CLIP scores comparable to
SD1.5, but its sample quality is still inferior, as noted by the authors.
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Figure 11. Comparing text alignment tradeoffs at 256 × 256 pixels. We compare FID–CLIP score curves of StyleGAN-T, StyleGAN-T++,
and GigaGAN. For increasing CLIP score, all methods use via decreasing truncation [26] for values ψ = {1.0, 0.9, . . . , 0.3}.

Figure 12. Additional single step 5122 images generated with ADD-XL. All samples are generated with a single U-Net evaluation trained
with adversarial diffusion distillation (ADD).
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D. Additional Samples
We show additional one-step samples as in Figure 1 in Figure 12. An additional qualitative comparison as in Figure 4 which
demonstrates that our model can further refine quality by using more than one sampling step is provided in Figure 14, where
we show that, while sampling quality with a single step is already high, more steps can give higher diversity and better spelling
capabilities. Lastly, we provide an additional qualitative comparison of ADD-XL to other state-of-the-art one and few-step
models in Figure 13.

A cinematic shot of robot with colorful feathers.
Teddy bears working on new AI research on the moon in the

1980s.
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Figure 13. Additional qualitative comparisons to state of the art fast samplers. Few step samples from our ADD-XL and LCM-XL [40],
InstaFlow [36], and OpenMuse [48].

15



“a robot is playing the guitar at a rock concert in front of a large
crowd.”

“A portrait photo of a kangaroo wearing an orange hoodie and
blue sunglasses standing on the grass in front of the Sydney
Opera House holding a sign on the chest that says Welcome

Friends!”
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Figure 14. Additional results on the qualitative effect of sampling steps. Similar to Figure 4, we show qualitative examples when
sampling ADD-XL with 1, 2, and 4 steps. Single-step samples are often already of high quality, but increasing the number of steps can
further improve the diversity (left) and spelling capabilities (right). The seeds are constant within columns and we see that the general layout
is preserved across sampling steps, allowing for fast exploration of outputs while retaining the possibility to refine.
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