Как мы использовали нейросети в рекламе и увеличили показатели за месяц в пять раз

28
Как мы использовали нейросети в рекламе и увеличили показатели за месяц в пять раз

В Тинькофф Журнале уже несколько месяцев продолжается эксперимент: для некоторых статей обложки генерируют в нейросетях.

Они достаточно просты в использовании — можно с ходу создавать сносные проработанные изображения. Но действительно качественные генерации получаются не сразу: нейросеть нужно тщательно настроить под свои запросы, в идеале — дообучить. Иначе получится не то, что нужно, а скорее неконтролируемая фантазия на тему.

Первые наши обложки получились крайне удачными — их можно увидеть в материалах о бизнесе и психологии.

Поэтому мы решили провести эксперимент: сделать несколько рекламных плакатов для курсов Учебника Т⁠—⁠Ж и посмотреть, что сработает лучше всего.

Спойлер: победило аниме.

Какую нейросеть мы выбрали

В генерации обложек мы пробовали разные модели. Например, есть Midjourney — довольно простая в использовании нейросеть. Она генерирует красочные изображения по простым запросам, и для нее не нужен мощный компьютер: картинки создаются на серверах разработчиков.

Так что Midjourney — это хорошая точка вхождения для тех, кто до этого с нейросетями вообще никак не работал. Но она платная, а ее возможности ограничены.

В других случаях пробовали Stable Diffusion. На данный момент это самая продвинутая нейросеть для генерации картинок. В ней можно создавать качественные изображения с детальной настройкой практически всего, а еще она полностью бесплатна.

К тому же открытый исходный код позволяет дообучать Stable Diffusion на своих картинках. Но для нее нужен мощный компьютер и время, чтобы разобраться во всех тонкостях. Придется потратить немало времени на гайды.

Мы выбрали как раз Stable Diffusion. У этой нейросети сейчас есть ограничения, которые надо учитывать: нельзя сгенерировать текст на иллюстрациях или сложные объекты вроде купюр. Лучше всего получается стилизация.

Один из баннеров, который мы сделали в Stable Diffusion. Стиль — фотореализм
Один из баннеров, который мы сделали в Stable Diffusion. Стиль — фотореализм

Как нейросеть может пригодиться в рекламе

Возникла идея — использовать Stable Diffusion для A/B-тестирований. Это такие маркетинговые исследования, которые помогают на практике проверить, какая реклама лучше себя показала.

В нашем случае это работало так. Мы создавали разные визуализации одного и того же баннера, а затем запускали рекламу. После смотрели, какой баннер сработал лучше всех, и делали для него еще несколько вариаций. И повторяли этот цикл до тех пор, пока не получали нужных нам показателей переходов по рекламе.

Мы в Учебнике Тинькофф Журнала рекламируем самые разные курсы, и для каждого нужен свой подход. Без нейросетей A/B-тестирование подразумевало постоянное вовлечение дизайнеров. Но они тоже живые люди и не могут делать по десять иллюстраций за день — особенно когда речь о детализированных картинках в самых разных стилях.

Нейросети решают эту проблему: можно в течение дня сгенерировать десять уникальных картинок, на которые человек потратил бы больше недели.

Если иллюстратор сделает рисунок в стиле аниме день, то предварительно подготовленная нейросеть справится за три секунды. Здесь особенно хорошо помогает такая фишка, как дообучение моделей.

Как устроена Stable Diffusion

Stable Diffusion — нейросеть с открытым исходным кодом, которая появилась летом 2022 года. Поначалу у нее даже не было удобных «оболочек», то есть ее нельзя было запустить как любую другую программу с интерфейсом, приходилось работать через командную строку. Сейчас все стало намного проще.

Например, вот так выглядит интерфейс Stable Diffusion. Настроек много, но основная работа идет с запросом — промтом. Есть два поля для текста: в первом — что хочешь получить, во втором — чего не должно быть в генерации.

Еще есть количество шагов — от него зависит, насколько долго нейросеть генерирует изображения. За одну итерацию она не сильно обработает шум, поэтому 20 — оптимальное значение. Для фотографий иногда нужно больше
Еще есть количество шагов — от него зависит, насколько долго нейросеть генерирует изображения. За одну итерацию она не сильно обработает шум, поэтому 20 — оптимальное значение. Для фотографий иногда нужно больше

Важное преимущество Stable Diffusion в том, что модель можно дообучить на собственном наборе картинок, или датасете. Изначально нейросеть уже обучена на тысячах других изображений, но если хочется добиться определенной стилизации, придется создавать свои модели с датасетами.

В интернете можно найти пользовательские модели. Среди них есть 3D, винтажные кадры, вышивка, классическая анимация и даже безумный вариант на основе Liquid Television с MTV — передачи, где транслировали андеграундные мультфильмы и анимацию.

Мы тестировали десятки разных моделей, чтобы плакаты для баннера были разнообразнее. Но на этом не остановились и сами обучили три модели: на простых иллюстрациях, кадрах с «Пинтереста» и экспериментальной живописи.

Дообучение одной модели на ноутбуке с видеокартой 3080 RTX 16 Gb занимает полтора часа. Еще пару часов — подготовка датасета из 40 изображений. Несколько моделей получились неудачными: векторные иллюстрации генерировались плохо. А однажды Stable Diffusion выдал ошибку и заставил почти что рыдать. Модель полтора часа дообучалась, надо было использовать день в день, а в итоге ничего не сработало. Стоило запустить обучение заново — все стало хорошо. Но времени потеряли прилично.

Всего с начала эксперимента мы использовали 12 разных моделей.

Какие у нас получились баннеры

Мы не получали готовых изображений с первых же запросов. Сначала генерировали от 5 до 10 квадратных иллюстраций, а затем растягивали их до вертикального формата так, чтобы сохранить композицию. Исправляли недостатки: ошибки в анатомии, негармоничные цвета или артефакты. Склеивали варианты, которые хорошо сочетались.

В целом для одной хорошей иллюстрации мы генерировали 30—100 картинок — это занимало около получаса. Но чем дальше, тем легче. Больше всего времени уходит на поиск идей, поэтому иногда мы отказывались от образов, которые сложно генерировать, или же уходили совсем в другую сторону.

Как выглядит процесс генерации
Как выглядит процесс генерации

Еще мы использовали img2img, чтобы добавить текст или сложные объекты. Это метод, при котором нейросеть обрабатывает другое изображение. Например, с ним можно загрузить фотографию кота, выставить коэффициент изменения и написать, что нужно сгенерировать, скажем, рисунок на бумаге. И получится тот же самый кот, но будто нарисованный от руки.

Для img2img мы делали грубые коллажи, а потом загружали их в Stable Diffusion. Так мы получили генерации, которые сложно назвать искусственными.

Также задействовали иллюстрации в стилистике аниме. Раньше мы их никогда не использовали, потому что рисовать такое самостоятельно слишком дорого и долго. Интересно, что мы генерировали той моделью, которая, скорее всего, лежит в основе того вирального китайского приложения.

Сгенерировали телефон, добавили текст руками, загрузили в нейросеть и опять сгенерировали
Сгенерировали телефон, добавили текст руками, загрузили в нейросеть и опять сгенерировали

Первые результаты в рекламе

Наши эксперименты с нейросетями мы начали с курса Учебника «Как быть взрослым». Это новый курс, поэтому в январе 2023 года мы поставили себе цель привлечь в пять раз больше студентов, чем в декабре.

В течение нескольких дней мы создали в Stable Diffusion 23 новые визуализации — и сразу же отправили на A/B.

Примеры баннеров, которые мы отправили в таргет
Примеры баннеров, которые мы отправили в таргет

Эксперимент оказался по-настоящему успешным. Изначально мы рассчитывали, что приблизимся к заветным цифрам лишь через три-четыре итерации тестирования. Но нужные нам показатели получились в первой же итерации. Примерно треть баннеров дала нужный нам CTR — это доля кликнувших пользователей от всех тех, кто увидел рекламу. А конверсия оказалась в районе 25—30%.

Топовым баннером оказалась картинка с девушкой в аниме-стиле на фоне здания МГУ. Он сработал в два-три раза эффективнее, чем все остальные баннеры в среднем.

Мы ее назвали МГУ⁠-⁠тян
Мы ее назвали МГУ⁠-⁠тян

Наши выводы

Мы думаем, что в будущем маркетинг станет работать именно так, но уже полностью автоматизированно. За февраль сгенерировали 46 уникальных плакатов — и без дизайнеров.

Через пять лет концептуальные проблемы диффузионных нейросетей наверняка решат, а это значит, что все больше компаний начнут экспериментировать. Вряд ли дизайнер за день нарисует аниме в стиле студии Гибли или оформит фотореалистичный коллаж под Рене Магритта.

Но нейросети не заменят иллюстраторов. Этот эксперимент был бы невозможен без отбора и доработки. К тому же не получится генерировать баннеры с текстом или самим продуктом — это серьезное ограничение.

По сути, то, чем мы занимались, — наполовину автоматизированное A/B-тестирование. В ходе отбора лучшие иллюстрации показывают себя и самоулучшаются. Если это автоматизировать полностью, то реклама будет все лучше и лучше подстраиваться под целевую аудиторию — сама по себе.

Мы постим кружочки, красивые карточки и новости о технологиях и поп-культуре в нашем телеграм-канале. Подписывайтесь, там классно: @t_technocult.

Александр Намдаков
Как вам кейс?
Комментарии проходят модерацию по правилам журнала
Загрузка
0

*Вместо ChatGPT подставить любую хайповую НС*

9

Алёна, в том то и дело. Что ии пока заменяет не рутинную и черную работу - типа дворников, санитарок, официантов или шахтеров. А творческую и интеллектуальную - дизайнеры, копирайтеры, аналитика, частично программирование

1

Mystique, замена рутинной работы тоже идёт, причём достаточно давно — просто на этом нет такого хайпа и, как следствие, огласки в медиа.

Те же роботы-официанты в Азии во многих кафе уже давно есть. Сейчас вот и у нас их начали внедрять, в прошлом году такого видела в кафе около Кремля в Казани. У него, помимо функции развоза подносов с заказами ещё есть опция развлечения детей — выглядело крайне умильно.

Аналогичные модели выполняют роль экскурсоводов в Тульском музее оружия. Пока это всё скорее диковинка и развлечение, но не удивлюсь, если в ближайшее десятилетие они станут обыденностью.

Если говорить о более серьёзных примерах, то можно вспомнить разработки Kawasaki. У них, помимо мотоциклов, есть направления Heavy Industries и Robotics, в рамках которых в том числе работают над тем, чтобы тяжёлой работой занимались роботы, а не люди. Меня очень впечатлил их автоматон-сварщик, которого презентовали лет 7 назад. Сейчас его уже используют на многих производствах как полноценную рабочую единицу, особенно востребована модель при сварке труб под водой на большой глубине.

Ещё можно вспомнить компанию Dainese. На их складе в Италии сборкой всех заказов занимаются роботы: в них через сервер загружают базу штрихкодов-артикулов, после чего они самостоятельно катаются, собирают нужные позиции и пакуют их к отправке.

2

Алёна, был в таком кафе недавно. Едет к столику робот с заказанной едой, за ним бежит официантка, выкладывает еду с робота на стол. Поели, официантка загружает на робота грязные тарелки, он уезжает, она бежит за ним. Спрашиваем у неё: зачем вы за ним бегаете? Отвечает: если оставить его без присмотра, этот "дебил" либо тарелки разобьёт, либо себя. Хозяин сказал, что все такие убытки будет вешать на официантов.
Клёвая автоматизация, мне понравилось.

2

Сергей, конкретно в том кафе, о котором я рассказала выше, за роботом никто не следил и он вполне успешно справлялся с поставленной задачей без посторонней помощи. Видимо, владельцы того заведения, где были вы, решили сэкономить на покупке качественного агрегата.

0
Герой

21.03.23, 12:10

Отредактировано

Алёна, в том то и дело, что подобные роботы малодоступны и дороги + пока еще часто коряво все делают, пока настроишь - поседеешь (как с роботом-пылесосом, который кошачьи какахи развез по всей квартире вместо уборки), а тот же ChatGPT стоит 20 баксов в месяц и окупается за один день, даже если использовать его тупо для генерации контента.

1

Mystique, на счёт корявости не соглашусь. Те же роботы от KHI показали отличную стабильность работы в полевых условиях без каких-то танцев с бубнами.

Да, стоят они ощутимо дороже подписки на ChatGPT, но там и сопутствующие плюшки (фирменно ПО, выделенный специалист и круглосуточная поддержка, гарантия etc), и КПД в несоизмеримые разы выше, чем у ИИ, заменяющего копирайтера.

Да и вообще, на мой взгляд, не совсем корректно сравнивать сложных роботов такого плана и бесплатные нейронки — уж очень разные масштабы.

0

Алёна, а вы, простите, чем занимаетесь по работе? 🤔

0

Карина, у меня их три. Какая именно интересует?)

0

Алёна, без которой вы не боитесь остаться из-за чатГПТ и подобного.

0

Карина, если в этом плане, то ни одной из них развитие ChatGPT и прочих нейросетей не угрожает)

0

Алёна, просто ваша картинка как бы подразумевает, что угроза есть, но вы считаете её пустой. А так конечно, и токарю на заводе тоже до лампочки все эти чатГПТ и прочие нововведения.

0

Карина, не ищите заговор там, куда его не клали. Особенно в юмористических картинках из интернета.

0
0

"Топовым баннером оказалась картинка с девушкой в аниме-стиле на фоне здания МГУ. Он сработал в два-три раза эффективнее, чем все остальные баннеры в среднем."

Аниме спасет мир! 😂

8
0

Так и знал
Стал замечать контент и текст сгенерированный нейросетью. Банеры, обложки к статьям, вступление в текст и т.д и т.п
Чувствуется в этом какая-то фальш

6

Artem, ну я бы не назвала это фальшью - скорее у нейросетей очень узнаваемый тип (особенно в изображениях) работ, даже если применяешь к ним разные фильтры и стили.

6

Mystique, как у уличного художника на Невском 🙈

0
Шеф техноредакции Т—Ж

20.03.23, 18:10

Artem, текст в журнале никак не генерируется уж точно — он проходит через несколько редакторов и корректоров)

3

Артем, живых людей, надеюсь? )

0

Иван, ну как вам сказать, у каждого же свои критерии "живых" )

0
0
Издатель медиа Долями

20.03.23, 15:14

Пушка!

3
0

Все думал, что мне напоминают многочисленный "AI-контент", полезший из всех щелей...

В игре Atomic Heart есть отличная находка - можно "разговаривать с трупами".
По лору игры к мозгам людей подключили некий "полимер", который официально является интерфейсом к управлению роботами, а реально - влезает в мозг и становится его частью.
После биологической смерти носителя "полимер" умирает не сразу, а еще функционирует несколько суток, воспроизводя отрывки мыслей и воспоминаний носителя.

Вот "AI-контент" мне очень напоминает подобные разговоры...
Человека физически нет, но нечто выдает тебе что-то похожее, на то, что думал живой человек...

2

Иван, это называется эффект зловещей долины.

0

Алёна,
Не совсем.
Uncanny valley - это все-таки про внешний вид робота, куклы, персонажа.
А тут про контент - тексты, картинки и тп.

Наверное скоро придумают новый термин типа 'content uncanny valley'

0

Иван, когда в прошлом веке данный термин придумывали, видимо, даже не догадывались о том, что будет лет через 50. Так что да, с последним предположением про дополнение концепции полностью согласна — скорее всего так и будет.

0
0

Познавательно, доступно

0
0

Каких успехов вы добились в плане конверсии, не знаю. Но с эстетической точки зрения выглядит довольно убого. Наверное, пока не схлынула волна хайпа, подобные креативы будут давать какой-то CTR, но с каждым месяцем все меньше и меньше, пока отклик не обнулится.

0

Сообщество